Überblick RTM-Technik: Unterschied zwischen den Versionen
JoNä (Diskussion | Beiträge) (→Messmodi) |
JoNä (Diskussion | Beiträge) |
||
(7 dazwischenliegende Versionen desselben Benutzers werden nicht angezeigt) | |||
Zeile 1: | Zeile 1: | ||
− | Das Prinzip hinter dem Rastertunnelmikroskop lässt sich auf vielen externen Seiten gut nachvollziehen. Auf dieser Seite ist ein Auszug aus dem Wikipedia-Artikel dargeboten. Gute Erklärungen finden sich auf folgenden | + | Das Prinzip hinter dem Rastertunnelmikroskop lässt sich auf vielen externen Seiten gut nachvollziehen. Auf dieser Seite ist ein Auszug aus dem Wikipedia-Artikel dargeboten. Gute Erklärungen finden sich auf folgenden Seiten:<br> |
Wikipedia: https://de.wikipedia.org/wiki/Rastertunnelmikroskop<br> | Wikipedia: https://de.wikipedia.org/wiki/Rastertunnelmikroskop<br> | ||
Spektrum der Wissenschaft: https://www.spektrum.de/lexikon/physik/rastertunnelmikroskop/12085<br> | Spektrum der Wissenschaft: https://www.spektrum.de/lexikon/physik/rastertunnelmikroskop/12085<br> | ||
Welt der Physik: https://www.weltderphysik.de/gebiet/materie/analyse-von-materialien/rastersondenmethoden/rastertunnelmikroskopie/ | Welt der Physik: https://www.weltderphysik.de/gebiet/materie/analyse-von-materialien/rastersondenmethoden/rastertunnelmikroskopie/ | ||
= Überblick = | = Überblick = | ||
− | Bei der rastertunnelmikroskopischen Messung wird eine elektrisch leitende | + | Bei der rastertunnelmikroskopischen Messung wird eine elektrisch leitende, sehr feine Spitze systematisch in einem Raster über das ebenfalls leitende Untersuchungsobjekt gefahren. Der Abstand zwischen Spitze und Objekt ist dabei außerordentlich klein (im Nanometerbereich), aber nicht null. Zwischen der Oberfläche und der Spitze wird eine elektrische Spannung angelegt. Aufgrund des Abstandes gibt es aber noch eine [[Potentialbarriere]], die die Elektronen in der klassischen Physik eigentlich nicht überwinden können. Aufgrund des auftretenden [[Tunneleffekt]]s ist dennoch ein kleiner Strom messbar. Er entsteht dadurch, dass Elektronen in der Spitze auch eine gewisse Aufenthaltswahrscheinlichkeit in der Probe haben. Sie ist zwar sehr gering, führt aber dazu, dass immer wieder Elektronen die Potentialbarriere durchtunneln können. Dadurch entsteht ein schwacher Strom. Dieser ist sehr empfindlich auf kleinste Abstandsänderungen, da die Tunnelwahrscheinlichkeit mit dem Abstand exponentiell abnimmt. Liegt nun auf der Oberfläche eine Erhöhung vor, kann diese durch ein Ansteigen im Tunnelstrom registriert werden. Genau diese Veränderung wird gemessen und durch das Abrastern der Probe kann so ein Bild des Höhenprofils erzeugt werden. <br> |
− | + | Kurz gesagt, der Tunnelstrom I<sub>tun</sub> ist abhängig vom Abstand d zwischen Probe und Spitze und der Austrittsarbeit Φ der Elektronen. Die Ortsabhängigkeit des Tunnelstroms suggeriert dabei einen Blick auf die Oberflächentopografie, bildet aber exakterweise die Höhentopografie konstanter Elektronendichte ab. Das heißt, dass strenggenommen das gewonnene Bild der Messung zeigt nicht die tatsächliche Oberflächenstruktur, sondern die elektrische Struktur der Probe darstellt. In erster Näherung lässt sich der Tunnelstrom durch folgende Proportion ausdrücken: | |
I<sub>tun</sub> ∝ exp ( − Φ ⋅ d ) | I<sub>tun</sub> ∝ exp ( − Φ ⋅ d ) | ||
Zeile 12: | Zeile 12: | ||
Prinzipiell kann mit dem Rastertunnel-Effekt das RTM in den folgenden zwei Modi betrieben werden: | Prinzipiell kann mit dem Rastertunnel-Effekt das RTM in den folgenden zwei Modi betrieben werden: | ||
− | Beim Abrastern der Probenoberfläche wird die Höhe der Spitze mittels einer Feinmechanik (mit Hilfe des [[Piezoeffekt]]s) so geregelt, dass der Tunnelstrom konstant bleibt. Damit fährt die Spitze ein „Höhenprofil“ der Oberfläche nach, wobei das Höhen-Regelsignal zur Darstellung der Probenoberfläche benutzt wird. Die | + | == Tunnelstrom konstant == |
+ | Beim Abrastern der Probenoberfläche wird die Höhe der Spitze mittels einer Feinmechanik (mit Hilfe des [[Piezoeffekt]]s) so geregelt, dass der Tunnelstrom konstant bleibt. Damit fährt die Spitze ein „Höhenprofil“ der Oberfläche nach, wobei das Höhen-Regelsignal zur Darstellung der Probenoberfläche benutzt wird. Die Auflösung hängt vom Krümmungsradius der Spitze ab. Idealerweise fließt der Tunnelstrom nur über ein einziges, exponiertes Atom an der Spitze. | ||
+ | == Höhe der Spitze konstant == | ||
+ | Ebenso kann auch die Höhe der Spitze konstant gehalten werden, und durch die verschiedenen Entfernungen zur Probenoberfläche und der damit einhergehenden Variation des Tunnelstromes eine Rekonstruktion der Oberfläche aufgezeichnet werden. Damit dabei Probe und Spitze nicht kollidieren oder zu weit auseinander driften, muss bei diesem Messmodus schon konkretere Information über die Probe bestehen, damit ein sinnvoller Abstand gewählt wird. | ||
− | + | In unserem Fall wird das RTM mit konstantem Tunnelstrom betrieben. | |
− | |||
− | In unserem Fall wird das RTM |
Aktuelle Version vom 22. Juni 2021, 09:58 Uhr
Das Prinzip hinter dem Rastertunnelmikroskop lässt sich auf vielen externen Seiten gut nachvollziehen. Auf dieser Seite ist ein Auszug aus dem Wikipedia-Artikel dargeboten. Gute Erklärungen finden sich auf folgenden Seiten:
Wikipedia: https://de.wikipedia.org/wiki/Rastertunnelmikroskop
Spektrum der Wissenschaft: https://www.spektrum.de/lexikon/physik/rastertunnelmikroskop/12085
Welt der Physik: https://www.weltderphysik.de/gebiet/materie/analyse-von-materialien/rastersondenmethoden/rastertunnelmikroskopie/
Inhaltsverzeichnis
Überblick
Bei der rastertunnelmikroskopischen Messung wird eine elektrisch leitende, sehr feine Spitze systematisch in einem Raster über das ebenfalls leitende Untersuchungsobjekt gefahren. Der Abstand zwischen Spitze und Objekt ist dabei außerordentlich klein (im Nanometerbereich), aber nicht null. Zwischen der Oberfläche und der Spitze wird eine elektrische Spannung angelegt. Aufgrund des Abstandes gibt es aber noch eine Potentialbarriere, die die Elektronen in der klassischen Physik eigentlich nicht überwinden können. Aufgrund des auftretenden Tunneleffekts ist dennoch ein kleiner Strom messbar. Er entsteht dadurch, dass Elektronen in der Spitze auch eine gewisse Aufenthaltswahrscheinlichkeit in der Probe haben. Sie ist zwar sehr gering, führt aber dazu, dass immer wieder Elektronen die Potentialbarriere durchtunneln können. Dadurch entsteht ein schwacher Strom. Dieser ist sehr empfindlich auf kleinste Abstandsänderungen, da die Tunnelwahrscheinlichkeit mit dem Abstand exponentiell abnimmt. Liegt nun auf der Oberfläche eine Erhöhung vor, kann diese durch ein Ansteigen im Tunnelstrom registriert werden. Genau diese Veränderung wird gemessen und durch das Abrastern der Probe kann so ein Bild des Höhenprofils erzeugt werden.
Kurz gesagt, der Tunnelstrom Itun ist abhängig vom Abstand d zwischen Probe und Spitze und der Austrittsarbeit Φ der Elektronen. Die Ortsabhängigkeit des Tunnelstroms suggeriert dabei einen Blick auf die Oberflächentopografie, bildet aber exakterweise die Höhentopografie konstanter Elektronendichte ab. Das heißt, dass strenggenommen das gewonnene Bild der Messung zeigt nicht die tatsächliche Oberflächenstruktur, sondern die elektrische Struktur der Probe darstellt. In erster Näherung lässt sich der Tunnelstrom durch folgende Proportion ausdrücken:
Itun ∝ exp ( − Φ ⋅ d )
Messmodi
Prinzipiell kann mit dem Rastertunnel-Effekt das RTM in den folgenden zwei Modi betrieben werden:
Tunnelstrom konstant
Beim Abrastern der Probenoberfläche wird die Höhe der Spitze mittels einer Feinmechanik (mit Hilfe des Piezoeffekts) so geregelt, dass der Tunnelstrom konstant bleibt. Damit fährt die Spitze ein „Höhenprofil“ der Oberfläche nach, wobei das Höhen-Regelsignal zur Darstellung der Probenoberfläche benutzt wird. Die Auflösung hängt vom Krümmungsradius der Spitze ab. Idealerweise fließt der Tunnelstrom nur über ein einziges, exponiertes Atom an der Spitze.
Höhe der Spitze konstant
Ebenso kann auch die Höhe der Spitze konstant gehalten werden, und durch die verschiedenen Entfernungen zur Probenoberfläche und der damit einhergehenden Variation des Tunnelstromes eine Rekonstruktion der Oberfläche aufgezeichnet werden. Damit dabei Probe und Spitze nicht kollidieren oder zu weit auseinander driften, muss bei diesem Messmodus schon konkretere Information über die Probe bestehen, damit ein sinnvoller Abstand gewählt wird.
In unserem Fall wird das RTM mit konstantem Tunnelstrom betrieben.